Insect swarms might generate as much electric charge as storm clouds

4 weeks ago 12
ARTICLE AD BOX

You might feel a spark when you talk to your crush, but living things don’t require romance to make electricity. A study published October 24 in iScience suggests that the electricity naturally produced by swarming insects like honeybees and locusts is an unappreciated contributor to the overall electric charge of the atmosphere.

“Particles in the atmosphere easily charge up,” says Joseph Dwyer, a physicist at the University of New Hampshire in Durham who was not involved with the study. “Insects are little particles moving around the atmosphere.” Despite this, the potential that insect-induced static electricity plays a role in the atmosphere’s electric field, which influences how water droplets form, dust particles move and lightning strikes brew, hasn’t been considered before, he says.

Scientists have known about the minuscule electric charge carried by living things, such as insects, for a long time. However, the idea that an electric bug-aloo could alter the charge in the air on a large scale came to researchers through sheer chance.

“We were actually interested in understanding how atmospheric electricity influences biology,” says Ellard Hunting, a biologist at the University of Bristol in England. But when a swarm of honeybees passed over a sensor meant to pick up background atmospheric electricity at the team’s field station, the scientists began to suspect that the influence could flow the other way too. 

Hunting and colleagues, including biologists and physicists, measured the change in the strength of electric charge when other honeybee swarms passed over the sensor, revealing an average voltage increase of 100 volts per meter. The denser the insect swarm, the greater the charge produced.

This inspired the team to think about even larger insect swarms, like the biblical hordes of locusts that plagued Egypt in antiquity (and, in 2021, Las Vegas (SN: 3/30/21)). Flying objects, from animals to airplanes, build up static electricity as they move through the air. The team measured the charges of individual desert locusts (Schistocerca gregaria) as they flew in a wind tunnel powered by a computer fan. Taking data on locust density from other studies, the team then used a computer simulation based on the honeybee swarm data to scale up these single locust measurements into electric charge estimates for an entire locust swarm. Clouds of locusts could produce electricity on a per-meter basis on par with that in storm clouds, the scientists report.

Hunting says the results highlight the need to explore the unknown lives of airborne animals, which can sometimes reach much greater heights than honeybees or locusts. Spiders, for example, can soar kilometers above Earth when “ballooning” on silk threads to reach new habitats (SN: 7/5/18). “There’s a lot of biology in the sky,” he says, from insects and birds to microorganisms. “Everything adds up.”

Though some insect swarms can be immense, Dwyer says that electrically charged flying animals are unlikely to ever reach the density required to produce lightning like storm clouds do. But their presence could interfere with our efforts to watch for looming strikes that could hurt people or damage property.

 “If you have something messing up our electric field measurements, that could cause a false alarm,” he says, “or it could make you miss something that’s actually important.” While the full effect that insects and other animals have on atmospheric electricity remains to be deduced, Dwyer says these results are “an interesting first look” into the phenomenon.

Hunting says this initial step into an exciting new area of research shows that working with scientists from different fields can spark shocking findings. “Being really interdisciplinary,” he says, “allows for these kinds of serendipitous moments.”

Read Entire Article